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ABSTRACT 

Forced-oscillation pitch-damping balances oscillate over a small angular amplitude 
range about a nominal angle of attack and thus yield an effective value of the aerodynamic 
damping if the damping is a nonlinear function of angle of attack. Because the local value 
of the damping coefficient is generally required for computer-simulated motion studies, 
a procedure to ex'tract the local damping from the experimental effective damping output 
of a forced-oscillation balance is derived. A derivation is given of the basic integral equation 
relating local and effective damping. Techniques for solving this integral equation are given. 
The method is applied to experimental nonlinear damping data for three preliminary 
unmanned Mars reentry (Viking) configurations, and the results are discussed. 

... 
l l 1  
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SECTION I 
INTRODUCTION 

Two general procedures are available for measuring pitch-damping dynamic stability 
coefficients for a captive (sting-supported) model in a wind tunnel (Ref. 1). These methods 
are the forced-oscillation and the free-oscillation techniques. The free-oscillation balance 
is usually somewhat simpler in design and operation than a forced-oscillation balance; but 
the forced-oscillation balance provides more precise control of the amplitude of the 
oscillation, which can be particularly important if the model is dynamically unstable. Data 
reduction for a forced-oscillation system is generally simpler than for a free-oscillation 
balance. The free-oscillation balance yields transient angular motior. data which must be 
analyzed in terms of the decay in the amplitude to  yield the desired damping coefficients. 
As described below, the forced-oscillation balance operates at constant angular motion, 
and the damping coefficients are obtained directly from the torque input measurements. 

The von Ka'rmh Gas Dynamics Facility (VKF) of the Arnold Engineering 
Development Center (AEDC) has developed a forced-oscillation dynamic balance to  measure 
pitch (or yaw) damping. This balance is sting supported with a cross-flexure spring pivot 
system which allows one degree of freedom in angular motion. The balance system is 
described in Refs. 1 and 2. Certain essential features of the system operation are also 
described herein to provide the necessary background for the present analysis. A schematic 
representation of the VKF forced-oscillation balance is depicted in Fig. 1. 

The balance is equipped with a magnetic shaker motor and feedback control (Fig. 
2) to provide oscillation amplitudes, 81, from essentially zero to  approximately 2 deg. 
However, to reduce effects of tunnel vibrations, it is generally necessary to  make the 
oscillation amplitude greater than about 1 deg. The balance system output is a damping 
coefficient which is the mean value over a cycle of motion for that particular oscillation 
amplitude, 81, at the nominal angle of attack, a,. As the oscillation amplitude is lowered, 
the "effective" damping determined by the system approaches the "local" value for that 
particular a,. If the damping coefficient is a linear function of a within the region a, 
+ 8 1 t o  a, - 8 1, then the balance system gives the true local value of the damping coefficient 
on that particular a,. 

The values of the damping coefficient obtained from the forced-oscillation technique 
are easily interpreted if the variation of the local value of the damping coefficient with 
angle of attack is small within the range covered during the oscillation from a, - 81 
t o  a, + 81. There exist cases for which the variation of damping coefficient over the 
range of angle of attack is quite large. One such case was the unmanned Mars landing 
vehicle (Viking), tested in the AEDC Propulsion Wind Tunnels (Refs. 3 and 4), which 
was found to be dynamically unstable for small angles of attack (less than about 2 deg) 
and dynamically stable at higher angles. The variation of the damping coefficient with 
angle of attack over the angle-of-attack range covered in the forced oscillation was quite 
large. The purpose of this report is to describe the mathematical techniques by which 
the value of the damping coefficients for very small oscillations (termed the local value, 
C, (a,)) can be determined from the effective value obtained with the forced-oscillation 

1 
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Magnetic 

Shaker Mdor\ ,Low Pass Filters 

Shaker Motor Control 

Strain -Gaged 
Balance Flexures 

Apparent Center of 
Rotation and Model cg Location m 

Fig. 1 Schematic Representation of Balance System 

Balance Moments 

I a } Inertia 

Baa 

Static Moment 

. Flexures 
in 

0) - Actual Output from Flexures 

Oi (1) = Desired Output from Flexures - 
9e (t) = Error Signal = 8i (t) - % (t) 

cos w t 

Fig. 2 Schematic of Balance Feedback Control System 
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balance by oscillating the system with an amplitude, 81, about the angle of attack a,, 
goes to  zero, the effective value and the local value 

are the same; Le., 
(u,, 01). As the value of 

Deft- 

The local damping coefficients are of practical importance because they are required in 
computer simulations of dynamic motions. 

SECTION II 
ANALYSIS 

2.1 FORCED-OSCI LLATION BALANCE SYSTEM OUTPUT 

A schematic of the VKF forced-oscillation balance is shown in Fig. 1. A magnetic 
shaker motor is used to impose an approximately sinusoidal oscillation upon the model. 
The moments opposing the moment input by the motor are those attributable to  inertia, 
the aerodynamic restoring moment, and the flexure. Strain gages are attached to  the input 
torque beam and the flexure. The fust of these gives the input moment from the shaker 
motor, and the second is used to  determine the angular position of the model, 8. 

A feedback into the shaker motor control is used to  maintain the amplitude of the 
model oscillation, 81, at a preselected value (Fig. 2). It is this feedback that allows the 
device' t o  be used even with dynamically unstable systems since, for these, the shaker motor 
extracts energy from the system being tested. With a dynamically stable system, the shaker 
motor must add energy to the system to maintain a constant amplitude. 

To determine the damping, the frequency is varied until a phase shift, 4, of 
approximately 90 deg between the input torque and the displacement, 8, is obtained. 
At this condition the moments attributable to inertia and stiffness are essentially in balance, 
so the output of the shaker motor is basically compensating for the damping moment. 
The amplitudes of the moment, T I ,  and the displacement, 81, along with the frequency, 
w, allow the damping term to be evaluated. 

The control console is shown schematically in the lower portion of Fig. 1. Internally, 
there are low pass filters, phase shifters, and multipliers, which are used to give the 
amplitudes of the in-phase and out-of-phase components of the input torque. From these 
the aerodynamic damping and stiffness may be determined. 

The basic differential equation for a forced-oscillation pitch-damping balance is 

= \ I +  + h l , ~  + B;La + B, ( a  - UST) + M(t) 
'A w 

.- 

Aerodynamic Balance  F l e x u r e  F o r c i n g  \ loment  (2) 
R e s t o r i n g  hloment \!omen t of Shaker  

3 
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in which 

I = Model moment of inertia about pivot axis 

MT = Sum of aerodynamic, balance flexure, and forcing 
moments acting on model about pivot axis 

MD = Aerodynamic damping moment per angular velocity 
= (Cm A + Cm q )  q,Sd2/2Vm 

Ma = Aerodynamic pitching moment per unit angle (stiffness) 
- - C m a  qmSd 

B; = Balance flexure structural damping moment per 
angular velocity 

B, = Balance flexure moment per unit angle (stiffness) 

M(t) = Forced oscillatory moment impressed on model 

U S T  = Stationary angle of attack of sting 

a = Instantaneous angle of attack of the model 

The angle of attack may be written as 

a = a .  + B ( t )  

where 

O(t)  = Instantaneous oscillation amplitude about a, 

a, = Equilibrium angle of attack of model 

The relation between the sting angle and the equilibrium angle is given by 

Ba 

Ba + Ma 
a S T  a. = ~ 

The relationships among the various angles are shown in Fig. 3. 

(4) 

After substituting Eqs. (2), ( 3 ) ,  and (4) into Eq. ( l ) ,  the basic balance equation 
becomes 

4 
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Sting Centerline 

/ 
Model-Balance Centerline for Static 
Air-on-Equilibrium Conditions 

Maximum 
Oscillation 

\ 

a 

Model-Balance Centerline for Static 
Air-on-Equilibrium Conditions 

Relative Wind Direction 
Balance Flexure Apparent Center of 
Rotation and Model Center of Gravity ' / '  Relative Wind Direction 
Balance Flexure Apparent Center of 
Rotation and Model Center of Gravity 

Fig. 3 Geometry of P i tch-Damping  Balance-Sting Combination 

The stiffness of the flexure, B,, is generally selected to be much greater than the 
aerodynamic stiffness, Ma, since the latter vanes widely with tunnel conditions. This also 
decreases the effects of nonlinearities in the static restoring moment. In addition, the 
system is designed so that B, is constant over the range of deflections encountered. This, 
in conjunction with the feedback control system, permits the oscillation amplitude to 
be accurately represented by a pure cosine wave 

The output of the torque beam will, in general, contain higher harmonics, since by 
Eq. ( 5 )  all the damping and nonlinear terms will be included in M(t). Thus, the input 
moment can be expressed in a Fourier series 

m 

= T, cos  (kat  + 4)  
k= 1 

(7) 

If all of the coefficients in the basic differential equation are constants, then only 
the first term (k = 1) is present in M(t). Using Eq. (6) and collecting the coefficients 
of cos ut (in phase) and sin ut (out of phase) give for this particular case 

-Io 2 8 ,  - (hIa + B J O ,  = T, C O S  + 

5 
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Thus 

c o s  4 hl, + B, = - I o 2  - - T 1  

equals total static moment slope, and 

(9) 

equals total system damping coefficient. 

Normally the frequency is selected (a = WN) to give a phase shift of 90 deg in order 
to maximize the accuracy with which the damping coefficient may be determined. 

The measured values of T I ,  4, a, and 81, and values of B, and B;, from pretest 
calibrations then allow the aerodynamic coefficients, Ma and MD, to be determined from 
Eqs. (9) and (10). Normally, the aerodynamic stiffness, Ma, may be determined more 
accurately with a static balance. The aerodynamic damping, MD , is the sum of M i  and M,. 
The individual contributions of MA and M, cannot be distinguished by the balance, since u 
= q for the balance. 

2.2 EQUIVALENT DAMPING FOR NONLINEAR SYSTEMS 

If there are nonlinearities in the system, either or  both of the coefficients MD and 
Ma may vary. In general, each may be a function of a and u. To avoid certain pitfalls, 
it is preferable to  begin with the expression for the total aerodynamic moment, Ma, as 
a function of a and u 

The circuitry of the console contains low-pass filters so that the higher harmonics 
of M(t) are filtered out. Therefore, the system gives the fundamental harmonic; i.e., the 
in-phase (TI cos @) and the out-of-phase (TI sin 4) fundamental components of the input 
torque. In general 

.. 
M(t) = I8 - BG6 - B,O - Ma(ao + 8,8) 

m 

= T, c o s ( k o t + + )  
k= 1 

and 

0 

271 

-TI  s i n  = - 1 Jh1(t) s i n  a t  d(wt) 
71 

0 

6 

(13) 

(14) 
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With 8 = COS a t  these become 

277 
1 2 T, cos + = -J!- Iw 8 ,  c o s a t  + B p 8 ,  s i n  at - BaO1 COS at - MJ c o s a t  d(at)  (15) 
7.r 

0 

2n 
1 2 - T ,  s i n  + = - I [ -  Io 8 ,  cos at + B;la8, sin at - Ba8, cos  at-  M i l  s i n  ot d(at) (16) n 

0 

with 

h la  = hla(ao + 8, C O S  u t ,  - a8, s i n  a t )  

Certain of the integrals may be evaluated, with the result 

1 I ? , a o  + e l  cos at, - 0 0 ,  s i n  a t )  s i n  at d(at) (19) -Tl s i n  + = B p 8 ,  - 
77 

0' 

These results are valid for arbitrary aerodynamic moments. 

It is of interest to simplify these results for certain specific cases. If the aerodynamic 
moment is a continuous function of the angular velocity, then an expansion can be made 
about an  angular velocity of zero. 

In terms of these quantities 

7 
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The parameter Ma is therefore independent of velocity. This is a direct consequence of 
the assumption that Ma is continuous, since any dependence upon velocity appears in 
M D .  The moment can now be written as 

With this representation, the integrals may be simplified 

2n 
T ,  c o s  4 1 

= - I o 2  - Ba - --/M,(a)a c o s o t  d b t )  
8 ,  d l  0 

2 2 
= -Io - B a  -' j t a ( a g  + 8, cos at) COS a t  d(ot)  

0 

2n 

(25) 
1 2 = B;, + -I MD(ao + 8 ,  cos u t ,  - o8, s in  a t )  s i n  u t  d(wt) 

T ,  sin 4 - oe 77 
I 0 

According to this, nonlinearities in the static moment do not affect the damping as 
determined by the forced-oscillation balance. This is valid if Ma is a single valued function 
of a. 

If the damping coefficient is expanded in terms of u, i.e. 

Equation ( 2 5 )  becomes 

2 T ,  sin 2n - = Bh + 1 IMD(ao  + 8 ,  c o s o t ,  0 )  s i n  at d b t )  
0% n 

0 

+ y [  0291 277 7 d2M, ( a ,  + 8 ,  c o s w t ,  0 )  s i n  4 o t  d(wt) 

048: 277 d4MD 6 +-s n 
( a o  + 8 ,  cos u t ,  0 )  s i n  a t  d h t )  + ... 

The left-hand side of this equation is the value determined by the forced-oscillation 
technique. If the aerodynamic damping coefficient MD is constant or is a linear function 
of u, then the result reverts to  that given by Eq. (10). If the aerodynamic coefficient 
is nonlinear with angular velocity, Le. 

8 
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according to  Eq. (27) the apparent effective damping determined by the forced-oscillation 
technique will depend upon the frequency, a. For this reason it is advisable to obtain 
data a t  two or more frequencies, which requires using more than one set of flexures. 
If there is no dependence upon frequency noted, then it may be concluded that 

d2nMD 
- -  - 0  

2 n  a; 

One class of nonlinearities that does not fall within the above framework is hysteresis, 
because the moment is not a continuous analytic function of velocity. If Mh is the hysteresis 
moment, and assuming for simplicity that the variation of Ma with a is linear 

M a  = M,u + M, a > o  

= h l , ~  - M, & < O  

Then 

T,  s i n  8 4 M h  
= Ba + - -  

0% me, 

In this case the apparent damping varies inversely with 0 0 1 .  Since the balances operate 
at constant w0 1 , the quantity (4Mh /nu0 1 )would appear to the balance system as a constant 
value of effective aerodynamic damping, M D , , ~ ~ ,  for that particular test condition. As with 
the case of a nwinea r  damping coefficient, testing at different frequencies would reveal 
the existence of the effect. 

In the remaining development it is assumed that there is no hysteresis, and the 
nonlinearities with respect t o  angular velocity in the damping coefficient are negligible. 
Under these conditions 

2n 
T s i n  q5 1 

= B;1 + ;/M&a0 + 8, cos  a t ,  0)  s in2wt  d(mt) - 
4 0 

If now the local value of damping derivative, C m D  (a) ,  is related to  MD and the effective 
value, C ,  (q,, el) ,  is that determined from the forced-oscillation technique, i.e., from 
F-q. (30), then 

e f f  

Equation (3 1) is an integral equation which relates the effective experimental damping 
obtained from the present balance system to the local damping. This integral relationship 
can also be obtained directly, without considering the balance output, by equating the 
amount of energy dissipated per cycle by the local and effective damping (Refs. 5, 6, 
and 7). 
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Equation (31) is valid for a nonlinear pitching moment (C, versus a) so long as 
the pitching moment is single valued for a given a. That is, pitching-moment hysteresis 
or time lags (because of viscous effects) can also add or dissipate system energy, which 
will then appear as nonlinear damping (Eq. (29)). 

23 SOLUTION OF INTEGRAL EQUATION 

Equation (31) is a Fredholm integral equation of the first kind (Ref. 8). The known 
quantity is C, which is a function of a, and tI1 and usually is known for various 
values of a, at a fixed value of 81. The unknown quantity is C ,  D ,  which is a function 
of a. Three ways of solving this equation were tried, with the first two being unsuccessful. 

e f f  

For the first approach, Eqs. (3) and (6) were used in Eq. (31) to give 

Equation (32) was written in finite difference form involving the known values of C ,  
e f f  

and the unknown values of C, (Fig. 4). The procedure was very similar to that mentioned 
in Ref. 9. This formulation led to  a set of linear simultaneous equations for the unknown 
quantities which could be solved by standard techniques. The answers, however, were 
extremely sensitive to  the input values of the effective damping. The results, in general, 
were very erratic, even for simple test cases, and the method was abandoned. 

The second approach to obtain a practical relationship between the local and effective 
damping consisted of a series solution for Eq. (32) (Ref. 8). The known effective damping 
and the unknown local damping were represented by Fourier cosine series. The kernel 
was represented by various types of power series in a. This allowed the analytic evaluation 
of the integral for a general term, and a relation between the known (effective) and 
unknown (local) Fourier coefficients could be established. This relation for the kfh 
coefficient is of the form 

A a  k k = -  
'k 

(33) 

The weighting coefficient, wk, is shown schematically in Fig. 5 as a function of k. Note 
that for large values of k, Wk is very small and oscillates about zero. I t  was this oscillatory 
behavior of Wk that led to  the abandonment of this method, since Eq. (33) could become 

This singular unless ak was determined from "mathematically perfect" data for C, 
basic procedure has been proposed (but not applied) recently in Ref. 10, where Wk is 
evaluated by Bessel. functions. Unfortunately, the method places such a premium on the 
quality of the input data and the Fourier series representation of this data that it is not 
practical for this particular case. 

e f f '  
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D 

Fig. 4 Schematic Illustration of the Damping in Discrete Variable Form 
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Fig. 5 Typical Variation of Wk versus k 
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Both of the above techniques failed because of a very strong sensitivity of the local 
damping coefficient to the effective damping coefficient. Many physically unrealistic values 
of the local damping coefficient were obtained, such as values that were alternately large 
positive and large negative. The reason for this behavior can be seen in Fig. 5 ,  which 
essentially states that there are certain specific values of higher frequency contribution 
which should not be present in the effective damping. Because of noise and other 
inaccuracies, such frequencies will be present, and, in the inversion process, effects of 
the noise will dominate. 

To overcome this undesirable effect, smoothing of the input data is necessary. In 
the second approach smoothing by Fourier series was found to be unacceptable. The third 
approach made use of polynomial smoothing. The manner in which this was accomplished 
is somewhat similar t o  the procedure given in Ref. 6 for free-oscillation pitch-damping 
data. However, certain features of the present analysis for forced oscillation were not 
necessary in Ref. 6 and, as such, merit inclusion here. To provide continuity, the procedure 
is outlined in detail. 

I t  is assumed that C,, can be represented by a power series in a of the form 

The odd powers are included to enhance the curve fitting capability, but they must be 
considered as absolute quantities because of the requirement that C, ,, be symmetrical 
about a n  angle of attack of zero. This is valid for a body of revolution. 

Equations (3) and (6) are substituted into Eq. (34). The resulting expression for 
C,, may be substituted into Eq. (30) and integrated analytically. It is convenient to  
work with the even and odd terms separately. The even terms of Eq. (34) are 

4 
2 

(35) 
EVENS = C o  + C2(ao+e1 c o s u t )  + C 4 ( a o  + 81 c o s  ut) 

8 + c 6 ( a 0  + 0 ,  cos  + C8(ao + 0 ,  c o s  u t )  

The odd terms of Eq. (34) are 

If a, is less than 81, then a will be negative over a portion of the half cycle (Figs. 
6 and 7). Again referring to  Figs. 6 and 7 and using Eqs. (3) and (6), /3 can be determined. 

o = a. + e l c o s ( T - p )  

p =  0 
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Fig. 6 Schematic Depiction of Integral Limits for Polynomial Representation 
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* O  

Fig. 7 Typical Cyclic Variation of a and C, 
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The odd terms are made positive (or absolute) in the cyclic region from 71 - p to 71 by 
changing sign. With reference to Fig. 7 and Eq. (31), the same amounts of energy are 
dissipated over each half cycle. Consequently, Eqs. ( 3 9 ,  (36), and the results of Eq. (37) 
can be combined with Eq. (31) to give 

n 

Cm = I[ [EVENS] s i n 2  (at) d ( o t )  
D e f f  

+ n /[ODDS] s i n 2  ( a t )  d(wt) 
0 

n 
- 2 I [ODDS] s i n 2  (at) d(wt) n 

n-P 

The evaluation of Eq. (38) yields 

Cm = C O R ,  + C l  H l  + C 2 R 2  + C 3 R 3  + C 4 R 4  
eff 

+ c5 R, + c6 R6 + c7 R, + c8 R8 

where 

R, = 1.0 

2 
R ,  = P p ,  + 3 P201 

R,  = + - e t  
R, = Plao + 2 p 2 a i e 1  + - P3aoel + 

R, = + aoel  + - e;  

2 1  
4 

3 3 2 
4 

4 3 2 2  1 
8 

(39) 
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(50 )  

s i n  2 8  s i n  4p s i n  6 p )  
12  + -  

4 

2 16 3 
p7 = -; (7 s i n  p c0s5  p) + ps  

(53) 

( 5 5 )  

If a, = 0, the above results also apply to the type of free oscillation about zero 
a which was considered in Ref. 6.  In particular, if the odd terms are neglected for this 
condition, Eq. (39) reduces to Eq. (13) of Ref. 6.  The polynomial method may also 
be applied to free-oscillation test data for a, not equal to zero if the free-oscillation 
damping is determined for the same value of 81 from oscillation envelopes at different 
values of a,,. 

Equation (34) (CmD) and Eq. (39) (CmDeff)  are related in that both contain the 
coefficients Co...Cs as unknown quantities. Practical use is made of this relationship by 
curve-fitting the experimental values of CmDeff  as functions of a, and 81 with Eq. (39) 
and determining the coefficients CO ... Cs by a least-squares procedure. This immediately 
yields the corresponding values of C,, since they can now be computed from Eq. (34) 
for a given a = G. 

This analysis was made for an eighth-order polynomial curve (nine unknowns), but 
it is easily reduced to a sixth-order (seven unknowns) o r  a fourth-order (five unknowns) 
curve by merely deleting the higher-order terms. A program has been written for the VKF 
€DC-l604B computer which incorporates the above analysis relating the local and effective 
damping coefficients. The coefficients are determined for a minimum square-error fit to  
the experimental data points. 

2.4 THE V-WELL AND SQUARE WELL 

One of the earlier approaches to acquire insight concerning the local-effective damping 
relationship expressed by Eq. (31) was to assume simple variations for the local damping 
and compute the resulting effective damping. One such variation was the V-well 
representation of the local damping as depicted in Fig. 8. This simple variation is composed 
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a. Schematic Depiction of Integral Limits 

b. Typical Effect of Oscillation Amplitude on Effective Damping 
Fig. 8 V-Well and Square Well Representation of Local Damping 
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of straight-line (linear) segments so that Eq. (31) is easy to  evaluate once the proper 
integral limits have been established. These limits are shown schematically in Fig. 8a and 
are computed as follows: 

= 0; p$) > 1 

= 77; lyl? 1 

The V-well shape can be represented mathematically as follows: 

= Cm ( a E )  = cons tan t  Y 3  5 a t  5 77 D 

in which 

(57) 

(59) 

Equations (3), (6), (60), and (61) are combined with Eq. (31) to  yield the following 
results for the effective damping of the V-well local damping: 
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The final result for the square well 

I 
In a like manner, other variations of 
segments can be handled. However, 

is : 

the local damping composed of straight-line (linear) 
the above results are sufficient to  represent large 

gradients or discontinuities in the local damping near zero angle of attack and predict 
the balance output under such conditions. For example, Fig. 8b illustrates the rather large 
effect of oscillation amplitude on the effective damping for an assumed V-well 
representation of the local damping. 

SECTION 111 
RESULTS AND DISCUSSION 

The polynomial curve fit analysis described in Section I1 has been applied to  
experimental nonlinear pitch-damping data from the VKF forced-oscillation balance. These 
data and the acquisition of these data are described in Refs. 3 and 4. Table I lists the 
configurations and associated test conditions that were considered in the present report. 
The configurations were 60- and 70-deg half-angle, blunted, cones with various afterbody 
arrangements (Fig. 9). 

Preliminary investigation revealed that the sixth-order polynomial representation gave 
better results for the fitted effective damping and computed local damping than either 
the fourth- or eighth-order polynomials. All the results presented herein are from a 
sixth-order polynomial curve fit unless stated otherwise. The polynomial analysis gave 
reasonable results for the majority of the test conditions considered for these 
configurations. 

A certain amount of discretion is necessary when applying this technique and 
evaluating results. A good polynomial curve fit to the experimental effective damping data 
does not guarantee that the computed local damping will be realistic. That is, for all 
practical purposes, the method does not yield a unique solution for the local damping. 
A slightly different fit to  the experimental effective damping may change the computed 
local damping considerably. The requirement was imposed that the computed local damping 
must exhibit realistic behavior before the results can be considered satisfactory. 
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TABLE I 
VIKING PITCH-DAMPING TEST CONDITIONS* 

Configuration - M.a Red X Figure Number 

610N 0.70 0.570 
1 .oo 0.440 
1.30 0.390 I 1.50 0.580 

72 1 

72 0 

0.70 
0.80 
0.90 
1 .oo 
1.10 
1.20 
1.40 
1.55 
1.60 
1.90 
2.30 
2.65 
3.00 

0.70 
0.80 
0.90 
1 .oo 
1.10 
1.20 
1.40 
1.53 
1.90 
2.30 
3.00 

0.873 
0.790 
0.732 
0.689 
0.655 
0.624 
0.594 
0.581 
0.579 
0.578 
0.624 
1.299 
0.730 

0.876 
0.79 1 
0.729 
0.686 
0.648 
0.625 
0.596 
0.582 
0.587 
0.616 
0.732 

1 Oa 
1 Ob 
1 oc 
1 Od 

1 l a  
l l b  
1 I C  

1 Id 
1 l e  
1 I f  
1 l g  
1 l h  
1 l i  
1 l j  
1 l k  
11Q 
1 l m  

12a 
12b 
12c 
12d 
12e 
12f 
12g 
12h 
12i 
12j 
12k 

*From Refs. 3 and 4 
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5*442(Typ) A - 2.679 L-7 

Configuration 610N = 601 

All Dimensions 
in Inches 

Configuration 720 

70 

Configuration 721 
Fig. 9 Model Geometry 
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The results are presented in Fig. 10 (Configuration 610N), Fig. 11 (Configuration 
721), and Fig. 12 (Configuration 720) as a function of angle of attack. Shown are the 
spread in the experimental data (vertical lines), the sixth-order fit to the experimental 
data of equivalent damping (dashed line), and the computed local value. For all cases 
the damping is stabilizing at higher angles and varies from mildly stabilizing to violently 
destabilizing at zero angle of attack. 

Figure 13 presents a summary of the damping coefficient at zero angle of attack 
versus Mach number. The basic character of the curve is the same for each configuration, 
i.e., near-neutral stability at  a Mach number of 0.7, becoming significantly unstable in 
the Mach number range from 1.0 to 2.2, and stable at higher Mach rimbcis. 

Satisfactory results for polynomial representation could not be obtained for 
Configurations 720 and 721 at M, = 1.40 to 1.90. The balance output for these conditions 
(Figs. l l g ,  h, i, j, and 12g, h, i) reveals that the experimental effective damping has an 
extremely strong (almost discontinuous) variation between a of zero and 1 deg. Also shown 
in these figures are the results of the effective damping computed from an assumed V-well 
variation of the local damping. Other variations of the V-well and square well 
representations, as well as polynomial curves, were also investigated, but the computed 
effective damping did not change substantially from that shown in these figures. This 
computed effective damping and the experimental effective damping differ considerably 
at a = 1 deg, but compare favorably a t  a = 0 and 2 deg. 

For M, = 1.20 to 2.0, it is possible that the highly nonlinear behavior observed 
in the experimental effective damping could be attributed to  a destabilizing hysteresis 
effect in the static pitching moment and that these effects are greatest at  a, = 0 (Eq. 
(29)). The mathematical nature of the curve suggests this possibility, but there is no relevant 
aerodynamic theory upon which to base this speculation. Free-oscillation data (for various 
amplitudes and frequencies) will shed some light on this. 

SECTION IV 
SUMMARY AND CONCLUSIONS 

A procedure to extract the local damping from the experimental effective damping 
output of a forced-oscillation balance has been derived because the local instantaneous 
pitch damping is required for motion simulation of certain preliminary Mars unmanned 
reentry (Viking) configurations. The VKF forced-oscillation pitch-damping balance system 
has been briefly reviewed and a relationship has been established between the effective 
damping output of the balance and the local aerodynamic damping. This relationship is 
an integral equation which was solved to yield a practical connection between the local 
and effective damping. This connection involves a high-order polynomial (up to eighth 
order in a and 8 1 ) representation of the damping coefficients. Practical use of this technique 
requires a polynomial curve fit to the experimental effective damping which results in 
coefficients for the polynomial representation of the local damping. This procedure has 
been applied to experimental data obtained by the VKF forced-oscillation balance for 
preliminary Viking configurations. 
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The following characteristics of the procedure and conclusions concerning its practical 
usage are noteworthy: 

1. Initial attempts. to obtain a practical solution for the integral equation (Eq. 
(31)) utilized a Fourier series representation of the local damping and also 
a discrete variable approach. Both of these methods were unsatisfactory 
and were abandoned in favor of a polynomial representation which proved 
successful. 

2. Discretion is necessary when applying the polynomial curve-fitting technique 
and interpreting the results. A good polynomial curve-fit to the experimental 
effective data does not automatically yield reasonable results for the 
computed local damping. The computed local damping also has to exhibit 
realistic behavior before the overall results can be considered satisfactory. 

3. The sixth-order polynomial representation gave better overall results for the 
fitted effective damping and the computed local damping than either the 
fourth- or eighth-order polynomials. 

4. The present polynomial technique may be applied to free-oscillation 
damping data acquired by oscillating about a = 0, if a, is set equal to 
zero in Eq. (39). 

5 .  The polynomial method may also be applied to free-oscillation data obtained 
by small oscillation about a nonzero a,. In this case, the free-oscillation 
damping must be determined for the same value of 81 from the oscillation 
envelopes obtained by testing at different values of a,. 

6. If the static moment is a multivalued function of a for an oscillation cycle 
(hysteresis), this will create additional damping (or undamping) which will 
add to any conventional aerodynamic damping already present. The balance 
output will contain the sum of both the hysteresis damping and conventional 
damping. Forced- or free-oscillation test data for different amplitudes and 
frequencies will aid in interpreting this phenomenon. 

7. The apparent damping effects of a multivalued static aerodynamic pitching 
moment are not included in the integral equation (Eq. (31)) relating local 
and effective aerodynamic damping. This also applies to the polynomial 
solution of the integral equation (Eqs. (34) and (39)). 

8. The polynomial method gave reasonable results for the Mars unmanned 
reentry configurations at the subsonic, transonic, and supersonic Mach 
numbers above M, = 2.00. However, reasonable results could not be 
obtained for Configurations 720 and 721 at  Mach numbers from 1.40 to 
1.90. 
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